"""
Text classification with the torchtext library
==================================

In this tutorial, we will show how to use the torchtext library to build the dataset for the text classification analysis. Users will have the flexibility to

   - Access to the raw data as an iterator
   - Build data processing pipeline to convert the raw text strings into ``torch.Tensor`` that can be used to train the model
   - Shuffle and iterate the data with `torch.utils.data.DataLoader <https://pytorch.org/docs/stable/data.html?highlight=dataloader#torch.utils.data.DataLoader>`__
"""


######################################################################
# Access to the raw dataset iterators
# -----------------------------------
#
# The torchtext library provides a few raw dataset iterators, which yield the raw text strings. For example, the ``AG_NEWS`` dataset iterators yield the raw data as a tuple of label and text.

import torch
from torchtext.datasets import AG_NEWS
train_iter = AG_NEWS(split='train')


######################################################################
# ::
#
#     next(train_iter)
#     >>> (3, "Wall St. Bears Claw Back Into the Black (Reuters) Reuters - 
#     Short-sellers, Wall Street's dwindling\\band of ultra-cynics, are seeing green 
#     again.")
# 
#     next(train_iter)
#     >>> (3, 'Carlyle Looks Toward Commercial Aerospace (Reuters) Reuters - Private 
#     investment firm Carlyle Group,\\which has a reputation for making well-timed 
#     and occasionally\\controversial plays in the defense industry, has quietly 
#     placed\\its bets on another part of the market.')
# 
#     next(train_iter)
#     >>> (3, "Oil and Economy Cloud Stocks' Outlook (Reuters) Reuters - Soaring 
#     crude prices plus worries\\about the economy and the outlook for earnings are 
#     expected to\\hang over the stock market next week during the depth of 
#     the\\summer doldrums.")
#


######################################################################
# Prepare data processing pipelines
# ---------------------------------
#
# We have revisited the very basic components of the torchtext library, including vocab, word vectors, tokenizer. Those are the basic data processing building blocks for raw text string.
#
# Here is an example for typical NLP data processing with tokenizer and vocabulary. The first step is to build a vocabulary with the raw training dataset. Users can have a customized vocab by setting up arguments in the constructor of the Vocab class. For example, the minimum frequency ``min_freq`` for the tokens to be included.


from torchtext.data.utils import get_tokenizer
from collections import Counter
from torchtext.vocab import Vocab

tokenizer = get_tokenizer('basic_english')
train_iter = AG_NEWS(split='train')
counter = Counter()
for (label, line) in train_iter:
    counter.update(tokenizer(line))
vocab = Vocab(counter, min_freq=1)


######################################################################
# The vocabulary block converts a list of tokens into integers.
#
# ::
#
#     [vocab[token] for token in ['here', 'is', 'an', 'example']]
#     >>> [476, 22, 31, 5298]
#
# Prepare the text processing pipeline with the tokenizer and vocabulary. The text and label pipelines will be used to process the raw data strings from the dataset iterators.

text_pipeline = lambda x: [vocab[token] for token in tokenizer(x)]
label_pipeline = lambda x: int(x) - 1


######################################################################
# The text pipeline converts a text string into a list of integers based on the lookup table defined in the vocabulary. The label pipeline converts the label into integers. For example,
#
# ::
#
#     text_pipeline('here is the an example')
#     >>> [475, 21, 2, 30, 5286]
#     label_pipeline('10')
#     >>> 9
#



######################################################################
# Generate data batch and iterator 
# --------------------------------
#
# `torch.utils.data.DataLoader <https://pytorch.org/docs/stable/data.html?highlight=dataloader#torch.utils.data.DataLoader>`__
# is recommended for PyTorch users (a tutorial is `here <https://pytorch.org/tutorials/beginner/data_loading_tutorial.html>`__).
# It works with a map-style dataset that implements the ``getitem()`` and ``len()`` protocols, and represents a map from indices/keys to data samples. It also works with an iterable datasets with the shuffle argumnent of ``False``.
#
# Before sending to the model, ``collate_fn`` function works on a batch of samples generated from ``DataLoader``. The input to ``collate_fn`` is a batch of data with the batch size in ``DataLoader``, and ``collate_fn`` processes them according to the data processing pipelines declared previouly. Pay attention here and make sure that ``collate_fn`` is declared as a top level def. This ensures that the function is available in each worker.
#
# In this example, the text entries in the original data batch input are packed into a list and concatenated as a single tensor for the input of ``nn.EmbeddingBag``. The offset is a tensor of delimiters to represent the beginning index of the individual sequence in the text tensor. Label is a tensor saving the labels of indidividual text entries.


from torch.utils.data import DataLoader
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def collate_batch(batch):
    label_list, text_list, offsets = [], [], [0]
    for (_label, _text) in batch:
         label_list.append(label_pipeline(_label))
         processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)
         text_list.append(processed_text)
         offsets.append(processed_text.size(0))
    label_list = torch.tensor(label_list, dtype=torch.int64)
    offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)
    text_list = torch.cat(text_list)
    return label_list.to(device), text_list.to(device), offsets.to(device)    

train_iter = AG_NEWS(split='train')
dataloader = DataLoader(train_iter, batch_size=8, shuffle=False, collate_fn=collate_batch)


######################################################################
# Define the model
# ----------------
#
# The model is composed of the `nn.EmbeddingBag <https://pytorch.org/docs/stable/nn.html?highlight=embeddingbag#torch.nn.EmbeddingBag>`__ layer plus a linear layer for the classification purpose. ``nn.EmbeddingBag`` with the default mode of "mean" computes the mean value of a “bag” of embeddings. Although the text entries here have different lengths, nn.EmbeddingBag module requires no padding here since the text lengths are saved in offsets.
#
# Additionally, since ``nn.EmbeddingBag`` accumulates the average across
# the embeddings on the fly, ``nn.EmbeddingBag`` can enhance the
# performance and memory efficiency to process a sequence of tensors.
#
# .. image:: ../_static/img/text_sentiment_ngrams_model.png
#

from torch import nn

class TextClassificationModel(nn.Module):

    def __init__(self, vocab_size, embed_dim, num_class):
        super(TextClassificationModel, self).__init__()
        self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=True)
        self.fc = nn.Linear(embed_dim, num_class)
        self.init_weights()

    def init_weights(self):
        initrange = 0.5
        self.embedding.weight.data.uniform_(-initrange, initrange)
        self.fc.weight.data.uniform_(-initrange, initrange)
        self.fc.bias.data.zero_()

    def forward(self, text, offsets):
        embedded = self.embedding(text, offsets)
        return self.fc(embedded)


######################################################################
# Initiate an instance
# --------------------
#
# The ``AG_NEWS`` dataset has four labels and therefore the number of classes is four.
#
# ::
#
#    1 : World
#    2 : Sports
#    3 : Business
#    4 : Sci/Tec
#
# We build a model with the embedding dimension of 64. The vocab size is equal to the length of the vocabulary instance. The number of classes is equal to the number of labels,
#

train_iter = AG_NEWS(split='train')
num_class = len(set([label for (label, text) in train_iter]))
vocab_size = len(vocab)
emsize = 64
model = TextClassificationModel(vocab_size, emsize, num_class).to(device)


######################################################################
# Define functions to train the model and evaluate results.
# ---------------------------------------------------------
#


import time

def train(dataloader):
    model.train()
    total_acc, total_count = 0, 0
    log_interval = 500
    start_time = time.time()

    for idx, (label, text, offsets) in enumerate(dataloader):
        optimizer.zero_grad()
        predited_label = model(text, offsets)
        loss = criterion(predited_label, label)
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)
        optimizer.step()
        total_acc += (predited_label.argmax(1) == label).sum().item()
        total_count += label.size(0)
        if idx % log_interval == 0 and idx > 0:
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches '
                  '| accuracy {:8.3f}'.format(epoch, idx, len(dataloader),
                                              total_acc/total_count))
            total_acc, total_count = 0, 0
            start_time = time.time()

def evaluate(dataloader):
    model.eval()
    total_acc, total_count = 0, 0

    with torch.no_grad():
        for idx, (label, text, offsets) in enumerate(dataloader):
            predited_label = model(text, offsets)
            loss = criterion(predited_label, label)
            total_acc += (predited_label.argmax(1) == label).sum().item()
            total_count += label.size(0)
    return total_acc/total_count


######################################################################
# Split the dataset and run the model
# -----------------------------------
#
# Since the original ``AG_NEWS`` has no valid dataset, we split the training
# dataset into train/valid sets with a split ratio of 0.95 (train) and
# 0.05 (valid). Here we use
# `torch.utils.data.dataset.random_split <https://pytorch.org/docs/stable/data.html?highlight=random_split#torch.utils.data.random_split>`__
# function in PyTorch core library.
#
# `CrossEntropyLoss <https://pytorch.org/docs/stable/nn.html?highlight=crossentropyloss#torch.nn.CrossEntropyLoss>`__
# criterion combines ``nn.LogSoftmax()`` and ``nn.NLLLoss()`` in a single class.
# It is useful when training a classification problem with C classes.
# `SGD <https://pytorch.org/docs/stable/_modules/torch/optim/sgd.html>`__
# implements stochastic gradient descent method as the optimizer. The initial
# learning rate is set to 5.0.
# `StepLR <https://pytorch.org/docs/master/_modules/torch/optim/lr_scheduler.html#StepLR>`__
# is used here to adjust the learning rate through epochs.
#


from torch.utils.data.dataset import random_split
# Hyperparameters
EPOCHS = 10 # epoch
LR = 5  # learning rate
BATCH_SIZE = 64 # batch size for training
  
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None
train_iter, test_iter = AG_NEWS()
train_dataset = list(train_iter)
test_dataset = list(test_iter)
num_train = int(len(train_dataset) * 0.95)
split_train_, split_valid_ = \
    random_split(train_dataset, [num_train, len(train_dataset) - num_train])

train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)
valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)
test_dataloader = DataLoader(test_dataset, batch_size=BATCH_SIZE,
                             shuffle=True, collate_fn=collate_batch)

for epoch in range(1, EPOCHS + 1):
    epoch_start_time = time.time()
    train(train_dataloader)
    accu_val = evaluate(valid_dataloader)
    if total_accu is not None and total_accu > accu_val:
      scheduler.step()
    else:
       total_accu = accu_val
    print('-' * 59)
    print('| end of epoch {:3d} | time: {:5.2f}s | '
          'valid accuracy {:8.3f} '.format(epoch,
                                           time.time() - epoch_start_time,
                                           accu_val))
    print('-' * 59)


######################################################################
# Running the model on GPU with the following printout:
#
# ::
#
#        | epoch   1 |   500/ 1782 batches | accuracy    0.684
#        | epoch   1 |  1000/ 1782 batches | accuracy    0.852
#        | epoch   1 |  1500/ 1782 batches | accuracy    0.877
#        -----------------------------------------------------------
#        | end of epoch   1 | time:  8.33s | valid accuracy    0.867
#        -----------------------------------------------------------
#        | epoch   2 |   500/ 1782 batches | accuracy    0.895
#        | epoch   2 |  1000/ 1782 batches | accuracy    0.900
#        | epoch   2 |  1500/ 1782 batches | accuracy    0.903
#        -----------------------------------------------------------
#        | end of epoch   2 | time:  8.18s | valid accuracy    0.890
#        -----------------------------------------------------------
#        | epoch   3 |   500/ 1782 batches | accuracy    0.914
#        | epoch   3 |  1000/ 1782 batches | accuracy    0.914
#        | epoch   3 |  1500/ 1782 batches | accuracy    0.916
#        -----------------------------------------------------------
#        | end of epoch   3 | time:  8.20s | valid accuracy    0.897
#        -----------------------------------------------------------
#        | epoch   4 |   500/ 1782 batches | accuracy    0.926
#        | epoch   4 |  1000/ 1782 batches | accuracy    0.924
#        | epoch   4 |  1500/ 1782 batches | accuracy    0.921
#        -----------------------------------------------------------
#        | end of epoch   4 | time:  8.18s | valid accuracy    0.895
#        -----------------------------------------------------------
#        | epoch   5 |   500/ 1782 batches | accuracy    0.938
#        | epoch   5 |  1000/ 1782 batches | accuracy    0.935
#        | epoch   5 |  1500/ 1782 batches | accuracy    0.937
#        -----------------------------------------------------------
#        | end of epoch   5 | time:  8.16s | valid accuracy    0.902
#        -----------------------------------------------------------
#        | epoch   6 |   500/ 1782 batches | accuracy    0.939
#        | epoch   6 |  1000/ 1782 batches | accuracy    0.939
#        | epoch   6 |  1500/ 1782 batches | accuracy    0.938
#        -----------------------------------------------------------
#        | end of epoch   6 | time:  8.16s | valid accuracy    0.906
#        -----------------------------------------------------------
#        | epoch   7 |   500/ 1782 batches | accuracy    0.941
#        | epoch   7 |  1000/ 1782 batches | accuracy    0.939
#        | epoch   7 |  1500/ 1782 batches | accuracy    0.939
#        -----------------------------------------------------------
#        | end of epoch   7 | time:  8.19s | valid accuracy    0.903
#        -----------------------------------------------------------
#        | epoch   8 |   500/ 1782 batches | accuracy    0.942
#        | epoch   8 |  1000/ 1782 batches | accuracy    0.941
#        | epoch   8 |  1500/ 1782 batches | accuracy    0.942
#        -----------------------------------------------------------
#        | end of epoch   8 | time:  8.16s | valid accuracy    0.904
#        -----------------------------------------------------------
#        | epoch   9 |   500/ 1782 batches | accuracy    0.942
#        | epoch   9 |  1000/ 1782 batches | accuracy    0.941
#        | epoch   9 |  1500/ 1782 batches | accuracy    0.942
#        -----------------------------------------------------------
#          end of epoch   9 | time:  8.16s | valid accuracy    0.904
#        -----------------------------------------------------------
#        | epoch  10 |   500/ 1782 batches | accuracy    0.940
#        | epoch  10 |  1000/ 1782 batches | accuracy    0.942
#        | epoch  10 |  1500/ 1782 batches | accuracy    0.942
#        -----------------------------------------------------------
#        | end of epoch  10 | time:  8.15s | valid accuracy    0.904
#        -----------------------------------------------------------


######################################################################
# Evaluate the model with test dataset
# ------------------------------------
#



######################################################################
# Checking the results of the test dataset…

print('Checking the results of test dataset.')
accu_test = evaluate(test_dataloader)
print('test accuracy {:8.3f}'.format(accu_test))

################################################
#
# ::
#
#        test accuracy    0.906
#


######################################################################
# Test on a random news
# ---------------------
#
# Use the best model so far and test a golf news.
#


ag_news_label = {1: "World",
                 2: "Sports",
                 3: "Business",
                 4: "Sci/Tec"}

def predict(text, text_pipeline):
    with torch.no_grad():
        text = torch.tensor(text_pipeline(text))
        output = model(text, torch.tensor([0]))
        return output.argmax(1).item() + 1

ex_text_str = "MEMPHIS, Tenn. – Four days ago, Jon Rahm was \
    enduring the season’s worst weather conditions on Sunday at The \
    Open on his way to a closing 75 at Royal Portrush, which \
    considering the wind and the rain was a respectable showing. \
    Thursday’s first round at the WGC-FedEx St. Jude Invitational \
    was another story. With temperatures in the mid-80s and hardly any \
    wind, the Spaniard was 13 strokes better in a flawless round. \
    Thanks to his best putting performance on the PGA Tour, Rahm \
    finished with an 8-under 62 for a three-stroke lead, which \
    was even more impressive considering he’d never played the \
    front nine at TPC Southwind."

model = model.to("cpu")

print("This is a %s news" %ag_news_label[predict(ex_text_str, text_pipeline)])


################################################
#
# ::
#
#        This is a Sports news
#
